Properties of Shapes: Measuring Angles in Degrees

Aim

Know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles.

Draw given angles, and measure them in degrees $\left({ }^{\circ}\right)$.

DfE Ready-to-Progress Criteria

Compare angles, estimate and measure angles in degrees $\left({ }^{\circ}\right)$ and draw angles of a given size (5G-1)

To measure angles of a turn in degrees.

Success Criteria

I can describe an angle as a turn.
I can identify right, acute, obtuse and reflex angles as an angle of a turn.

I can describe angles of a turn in degrees.

Key/New Words

Angle, turn, degrees, acute, right, obtuse, reflex, quarter-turn, half turn, three-quarter turn, full turn, clockwise, anticlockwise.

Resources
Lesson Pack

Preparation

Differentiated Measuring Angles in Degrees Activity Sheets - one per child

Diving into Mastery Activity Sheets - as required

Prior Learning It will be helpful if children can revisit acute, right and obtuse angles and recap how to identify them. This is covered in this Types of Angles lesson.

Learning Sequence

Remember It: Using the corresponding slide on the Lesson Presentation, the children will sort angles on to a
table based on whether they are acute, right-angled or obtuse. This activity is intended to recap prior learning
in year 4. To extend learning further, children can draw three more angles for each section of the table.

	Measuring Angles in Degrees: Using the differentiated Measuring Angles in Degrees Activity Sheets, the children complete tasks that provide them with opportunities to practise measuring angles in degrees.. To support children working towards expected level, there is a talk task provided which enables children to discuss angles as turns using key vocabulary. Sentence stems are provided to scaffold discussions. Children will be able to practise describing angles in terms of direction, fractions and measurements in Children working at expected level will engage in a talk task where they discuss angles as turns using key vocabulary. Children will be able to apply new learning on acute, obtuse and reflex angles and describe angles in terms of direction, fractions and measurements in degrees. degrees. To challenge children working at greater depth there is a task provided which allows the application of new learning. Children will complete an information table linked to finding angles around a compass. Children will draw a child's bedroom based on a set of instructions, then create their own instruction list for designing a zoo. This will provide children with an opportunity to apply the key vocabulary linked to measuring angles in degrees.	∞
\bigcirc	Diving into Mastery: Schools using a mastery approach may prefer to use the following as an alternative activity. These sheets might not necessarily be used in a linear way. Some children might begin at the 'Deeper' section and in fact, others may 'dive straight in' to the 'Deepest' section if they have already mastered the skill and are applying this to show their depth of understanding. Children complete fluency questions related to measuring angles in degrees. Children answer reasoning questions related to measuring angles in degrees. Children work individually or collaboratively on problem-solving questions related to measuring angles in degrees.	\square

Exploreit

Showit: Children can create a large-scale version of an activity to show turns around a point. They can place objects at different compass points and then stand in a position in the middle. They can turn around the point and have their partner describe their measurement of turn in degrees.
Drawit: Children can create a drawing of their bedroom and describe the positioning of items in their room in terms of degrees.
Learnit: Children will find this superb Knowledge Organiser helpful to learn about measuring in degrees.

DISCLAIMER

We hope you find the information on our website and resources useful.

Displaying the Presentation

To ensure this presentation displays correctly: If you are a Mac user, the presentation may open in 'slide master' mode - to see all the content, click 'close slide master' and the presentation should display correctly. If you are using Google Drive, the presentation won't display correctly if you open it in Google Slides. If you have opened it in Google Slides, you will need to download it again from the Twinkl website and this time open it from your computer.

Animations

This resource has been designed with animations to make it as fun and engaging as possible. To view the content in the correct formatting, please view the PowerPoint in 'slide show mode'. This takes you from desktop to presentation mode. If you view the slides out of 'slide show mode', you may find that some of the text and images overlap each other and/or are difficult to read.
To enter slide show mode, go to the slide show menu tab and select either from beginning or from current slide.

[^0]

Maths

Properties of Shapes

Measwining Angles in Degrees

Aim

- To measure angles of a turn in degrees.

Success Criteria

- I can describe an angle as a turn.
- I can identify right, acute, obtuse and reflex angles as an angle of a turn.
- I can describe angles of a turn in degrees.

Sort the angles into the table below. Are they acute, right or obtuse?
Can you explain your reasoning?

Acute			Right			Obtuse			
\mathbf{a}	\mathbf{d}	\mathbf{i}	\mathbf{c}	\mathbf{g}	\mathbf{j}	\mathbf{b}	\mathbf{e}	\mathbf{f}	\mathbf{h}

Ready for a challenge?
Draw three more angles for each part of the table!

To describe turns, we use the phrases clockwise and anticlockwise.

A and C show clockwise turns.
The movement is in the same direction as the hands on the clock and the numbers are going around the clock face.
B and D show anticlockwise turns.

They move in the opposite direction to the clock hands and numbers.

Charlie has tyrneth dinhieuighira cupartter Herris fardrig thavsforgings.the glide. He has turhedneot this esson,

Charlie has turned through two right angles. A right angle is 90°, so we can

 dete tuanlsith ly

Charlie is facing the swings again He turns through a full turn clockwise. A full turr is the same as our right angles. A rght angle is 90 so we can
 muttiphoo by + to calculqte a futurned in totat?

Charlie is facing the swings again. Discuss with a partner what would happen if Charlie turned one quarter-turn anticlockwise?

Charlie starts facing the swings.
He turns through $\frac{1}{4}$ turn.
Charlie is now facing the climbing frame
He has turned 90°
This is called a right angle.

Charlie is facing the swing again. He now moves half a turn anticlockwise.

Charlie starts facing the swings.
He turns through $\frac{\mathbf{1}}{\mathbf{2}}$ turn.
Charlie is now facing the seesaw
He has turned $\mathbf{1 8 0}^{\circ}$
This is called a straight line angle.

Charlie is facing the swing again. He now moves three-quarters of a turn anticlockwise.

Charlie starts facing the swings.
He turns through $\frac{\mathbf{3}}{\mathbf{4}}$ turn.
Charlie is now facing the slide
He has turned 270°
This is called a reflex angle.

Charlie is facing the swings again. He finally moves a full turn anticlockwise.

Charlie starts facing the swings.
Charlie is now facing the swings
He has turned 360°
This is called a full angle.

The inderarquequed

How can we cadolelatethoutumashyodeg.rees this turn is?

The measurement from N to E is 90°.

$$
\text { So, } 90^{\circ}+45^{\circ}=135^{\circ} .
$$

How can we caboblatethettumashyodeg.rees this turn is?

The measurement from N to E is 90°. 225° is a reflexangleasurement from E to 15 greater than 90°.

$$
\text { So, } 90^{\circ}+90^{\circ}+45^{\circ}=225^{\circ} \text {. }
$$

Charlie is facing the school. Discuss with a partner, what would happen if Charlie turned through 45° clockwise?

Charlie is facing the cafe.
What would he be facing if he turned 135° anticlockwise?

Charlie is facing the library.
What would he be facing if he turned 225° clockwise?

Charlie is facing the hospital. What would he be facing if he turned 315° clockwise?

Diving into Mastery

Dive in by completing your own activity!

Aim

- To measure angles of a turn in degrees.

Success Criteria

- I can describe an angle as a turn.
- I can identify right, acute, obtuse and reflex angles as an angle of a turn.
- I can describe angles of a turn in degrees.

Regent Studies | www.regentstudies.com

Next Steps

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

T	Teacher	I	Independent
PPA	Planning, Preparation and Assessment	AL	Adult Led
S	Supply	GP	Guided Practice

1)

a) 90°
b) 270°
c) 360°
d) 45°
e) 135°
f) 225°
2)
a) 450°
b) 270°
c) 540°
1)
a) 135°

$\frac{1}{2}$ turn
b) $\frac{3}{4}$ turn

$240^{\circ}+20^{\circ}$
c) $\frac{1}{4}$ turn

$120^{\circ}-30^{\circ}$
d) $320^{\circ}+30^{\circ}$

a full turn
2) Sam is correct because this turn has a value of 225°
3)

Two right angles are the same amount of turn as a straight line angle.	Always
Angles greater than 90° are acute.	Never
The distance between two compass points will be obtuse.	Sometimes

1) Accept answers where the apple and the orange provide a total that equals 180°.

For example: $100^{\circ}+80^{\circ}=180^{\circ}$

$$
170^{\circ}+10^{\circ}=180^{\circ}
$$

2)

1) Write the measurement of each angle in degrees.
a)

b)

c)

d)

e)

f)

2) Calculate the total number of degrees that Charlie turns through.
a) Charlie starts facing the swings. He turns clockwise to face the seesaw and then anticlockwise to face the climbing frame.

b) Charlie starts facing the slide. He turns anticlockwise to face the climbing frame and then clockwise to face the swings.

c) Charlie starts facing the climbing frame. He does a full turn clockwise. He then turns anticlockwise to face the slide.
\square

3) Insert <,> or = to complete these statements.
a) 135° \square $\frac{1}{2}$ turn
b) $\frac{3}{4}$ turn \square $240^{\circ}+20^{\circ}$
c) $\frac{1}{4}$ turn$120^{\circ}-30^{\circ}$
d) $320^{\circ}+30^{\circ}$ \square a full turn
4)

Is Sam correct? Explain your answer.

\qquad
\qquad
\qquad
\qquad
\qquad
3) Label the statements with always, sometimes or never. Give reasons for your answers.

| Two right angles are the same amount |
| :---: | :--- |
| of turn as a straight line angle. |

1) Complete the statement. Can you think of 5 different combinations?

1.	
2.	
3.	
4.	
5.	

2) Follow the instructions to work out the code to unlock the cookie jar.

Imagine you are facing N. Make a $\frac{3}{4}$ turn anticlockwise.
Then turn $\frac{3}{8}$ clockwise.
Next, turn 90° anticlockwise.
Finally, turn $\frac{5}{8}$ clockwise.

Can you find 2 other ways to write the instructions to give the same code?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

1) Write the measurement of each angle in degrees.

2) Calculate the total number of degrees that Charlie turns through.
a) Charlie starts facing the swings. He turns clockwise to face the seesaw and then anticlockwise to face the climbing frame.
b) Charlie starts facing the slide. He turns anticlockwise to face the climbing frame and then clockwise to face the swings.
c) Charlie starts facing the climbing frame. He does a full turn clockwise. He then turns anticlockwise to face the slide.

3) Write the measurement of each angle in degrees.

e)

S

4) Calculate the total number of degrees that Charlie turns through.
a) Charlie starts facing the swings. He turns clockwise to face the seesaw and then anticlockwise to face the climbing frame.
b) Charlie starts facing the slide. He turns anticlockwise to face the climbing frame and then clockwise to face the swings.
c) Charlie starts facing the climbing frame. He does a full turn clockwise. He then turns anticlockwise to face the slide.
5) Insert <,> or = to complete these statements.
a) 135°

$\frac{1}{2}$ turn
b) $\frac{3}{4}$ turn

$240^{\circ}+20^{\circ}$
c) $\frac{1}{4}$ turn

$120^{\circ}-30^{\circ}$
d) $320^{\circ}+30^{\circ}$

a full turn
6)

Is Sam correct? Explain your answer.

3) Label the statements with always, sometimes or never. Give reasons for your answers.

| Two right angles are the |
| :--- | :--- |
| same amount of turn as |
| a straight line angle. |

1) Insert <,> or = to complete these statements.
a) 135° \square $\frac{1}{2}$ turn
b) $\frac{3}{4}$ turn \square $240^{\circ}+20^{\circ}$
c) $\frac{1}{4}$ turn \square $120^{\circ}-30^{\circ}$
d) $320^{\circ}+30^{\circ}$ \square a full turn
2)

Is Sam correct? Explain your answer.

3) Label the statements with always, sometimes or never. Give reasons for your answers.

Two right angles are the same amount of turn as a straight line angle.

Angles greater than 90° are acute.

The distance between two compass points will be obtuse.

1) Complete the statement. Can you think of 5 different combinations?

$=$ straight line angle
2) Follow the instructions to work out the code to unlock the cookie jar.

Imagine you are facing N. Make a $\frac{3}{4}$ turn anticlockwise. Then turn $\frac{3}{8}$ clockwise.

Next, turn 90° anticlockwise.
Finally, turn $\frac{5}{8}$ clockwise.

Can you find 2 other ways to write the instructions to give the same code?

1) Complete the statement. Can you think of 5 different combinations?

$=$ straight line angle
2) Follow the instructions to work out the code to unlock the cookie jar.

Imagine you are facing N. Make a $\frac{3}{4}$ turn anticlockwise.
Then turn $\frac{3}{8}$ clockwise.
Next, turn 90° anticlockwise.
Finally, turn $\frac{5}{8}$ clockwise.
\square
\square
\square

Can you find 2 other ways to write the instructions to give the same code?

Measuring Angles in Degrees

To measure angles of a turn in degrees
000

Instructions for adult guided task:

1) Organise children into pairs and have them decide who is child A and who is child B.
2) Children cut out Charlie and place him in the centre of the building diagram.
3) Child A decides where Charlie is facing. They then turn him so he carries out a turn of their choice. Encourage children to explore clockwise and anticlockwise movements.
4) Child B describes Charlie's movement by adding missing words to the sentence stems.
5) The children then swap roles.
6) If children are ready for a challenge, they can use the compass image to turn Charlie and describe his movements using different angles.

Measuring Angles in Degrees

swimming pool				quarter	right	clockwise anticlockwise
school	hospital	180°	$135{ }^{\circ}$	half		
supermarket	cafe	270°	225°	three-quarter		obtuse
park	fire station	360°	315°	full		acute

Measuring Angles in Degrees

To measure angles of a turn in degrees

1) Use the compass to complete the table.			
Turn	Type of angle	Angle measurement (${ }^{\circ}$)	Fraction of a turn
north to west anticlockwise	right		
north-east to northwest clockwise			
east to west clockwise			half
south-west to southeast anticlockwise		90°	

2) Follow the instructions to draw the items of furniture in Aneeka's bedroom.

- Aneeka is facing north and looking at her bed.
- She makes a 180° turn and is now facing her desk.
- She completes a $\frac{1}{4}$ turn anticlockwise and is facing her wardrobe.
- She completes a $\frac{1}{2}$ turn clockwise and is facing her toy chest.
- She turns 45° clockwise and can see her drawers.

Measuring Angles in Degrees

3) You are in charge of designing a zoo. You must write clear instructions to outline where the animals must be placed. Include compass points and angles in degrees. Draw your zoo to match your design brief.

Example, Place the elephants north of the zoo and place the monkeys a 45° turn clockwise from the elephants.
\qquad

Measuring Angles in Degrees Answers

1) Use the compass to complete the table.			
Turn	Type of angle	Angle measurement (${ }^{\circ}$)	Fraction of a turn
north to west anticlockwise	right	90°	$\frac{1}{4}$
north-east to northwest clockwise	reflex	270°	$\frac{3}{4}$
east to west clockwise	straight line angle	180°	half
south-west to southeast anticlockwise	right	90°	$\frac{1}{4}$

1) Use the compass to complete the table.

- Aneeka is facing north and looking at her bed.
- She makes a 180° turn and is now facing her desk.
- She completes a $\frac{1}{4}$ turn anticlockwise and is facing her wardrobe.
- She completes a $\frac{1}{2}$ turn clockwise and is facing her toy chest.
- She turns 45° clockwise and can see her drawers.

Measuring Angles in Degrees

To measure angles of a turn in degrees
000

Instructions for adult guided task:

1) Organise children into pairs and have them decide who is child A and who is child B.
2) Children cut out Charlie and place him in the centre of the building diagram.
3) Child A decides where Charlie is facing. They then turn him so he carries out a turn of their choice. Encourage children to explore clockwise and anticlockwise movements.
4) Child B describes Charlie's movement by adding missing words to the sentence stems.
5) The children then swap roles.
6) If children are ready for a challenge, they can use the compass image to turn Charlie and describe his movements using different angles.

swimming pool
school
supermarket
park

clockwise
anticlockwise

quarter
half
three-quarter
full

90°
180°
270°
360°

right
straight line
reflex

Properties of Shapes | Measuring Angles in Degrees

To measure angles of a turn in degrees.		
I can describe an angle as a turn.		
I can identify right, acute, obtuse and reflex angles as an angle of a turn.		
I can describe angles of a turn in degrees.		

Properties of Shapes I Measuring Angles in Degrees
To measure angles of a turn in degrees.
:---
I can describe an angle as a turn.
I can identify right, acute, obtuse and reflex angles as an angle of a turn.
I can describe angles of a turn in degrees.

Properties of Shapes | Measuring Angles in Degrees

To measure angles of a turn in degrees.		
I can describe an angle as a turn.		
I can identify right, acute, obtuse and reflex angles as an angle of a turn.		
I can describe angles of a turn in degrees.		

Properties of Shapes | Measuring Angles in Degrees

To measure angles of a turn in degrees.		
I can describe an angle as a turn.		
I can identify right, acute, obtuse and reflex angles as an angle of a turn.		
I can describe angles of a turn in degrees.		

Properties of Shapes | Measuring Angles in Degrees

To measure angles of a turn in degrees.		
I can describe an angle as a turn.		
I can identify right, acute, obtuse and reflex angles as an angle of a turn.		
I can describe angles of a turn in degrees.		

Properties of Shapes | Measuring Angles in Degrees

To measure angles of a turn in degrees.		
I can describe an angle as a turn.		
I can identify right, acute, obtuse and reflex angles as an angle of a turn.		
I can describe angles of a turn in degrees.		

Properties of Shapes | Measuring Angles in Degrees

To measure angles of a turn in degrees.		
I can describe an angle as a turn.		
I can identify right, acute, obtuse and reflex angles as an angle of a turn.		
I can describe angles of a turn in degrees.		

Properties of Shapes | Measuring Angles in Degrees

To measure angles of a turn in degrees.		
I can describe an angle as a turn.		
I can identify right, acute, obtuse and reflex angles as an angle of a turn.		
I can describe angles of a turn in degrees.		

[^0]: You may wish to delete this slide before beginning the presentation.

